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Abstract. In a previous paper we have employed a group theoretic method to find the 
evolution operator for a quantum system having a SU(2)  Hamiltonian. In this paper, we 
consider a more complicated system whose Hamiltonian consists of SU(2)  and h(4) group 
generators. A transformation method will be introduced, in conjunction with the above 
group theoretic method, to tackle this quantum problem. The result thus obtained will be 
applied to the problem of a mass-varying harmonic oscillator under an external force. Our 
result shows that the equation of motion of this oscillator is identical to a damped harmonic 
oscillator under an external force. In addition, it is shown that an initial coherent state 
will evolve as a squeezed state under the above Hamiltonian. 

1. Introduction 

In a previous paper [ 11, we have discussed the application of group theoretic methods 
[ 1-41 in solving the Schrodinger equation. It has been demonstrated that the evolution 
operator can be evaluated easily once the group property of the Hamiltonian of a 
quantum system is taken into account. More precisely, if the Hamiltonian consists of 
group generators of a closed Lie group, then the corresponding evolution operator 
can be represented by a product of exponential operators whose exponents contain 
the closed Lie group generators. In the previous paper, we considered a quantum 
system whose Hamiltonian consists of SU(2) group generators. It is shown that under 
such a Hamiltonian, a coherent state will evolve as a squeezed coherent state. This 
result has been applied to the consideration of a mass-varying harmonic oscillator 
[ l ,  5-13]. We have shown that this type of quantum harmonic oscillator is intimately 
related to a classical damped harmonic oscillator. 

In order to explore the applicability of the group theoretic method, we shall, in 
this paper, consider a more complicated quantum system. The Hamiltonian of this 
system contains, besides the SU(2) group generators, the additional h(4) group (Heisen- 
berg-Weyi) generators. This Hamiltonian can be applied to the analysis of the gener- 
ation of non-Poissonian effects in laser-plasma scattering [ 141 and in the problem of 
a mass-varying harmonic oscillator under an external force [15-171. Our aim here is 
to analyse how the evolution property of a coherent state is modified with the introduc- 
tion of the h(4) group generators. In  addition, we want to illustrate how we can modify 
the original method presented in our previous paper in order to tackle a more compli- 
cated Hamiltonian system. 

In principle, we can utilise the method presented in the previous paper to treat the 
above complicated Hamiltonian system. However, due to the complex group structure 
of this Hamiltonian, it is not convenient and effective to evaluate the evolution operator 
for this Hamiltonian by means of the method in the previous paper. As a matter of 
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fact, in the analysis of a Hermitian Hamiltonian possessing a SU(1, 1)@h(4)  group 
structure, Dattoli er a1 [18] have utilised the notion of the interaction picture, in 
conjunction with a transformation method, to simplify the group structure of their 
Hermitian Hamiltonian. This procedure enables them to find the expression for the 
evolution operator. In our problem, however, the Hamiltonian need not be Hermitian. 
Therefore we shall introduce another transformation method to tackle our problem. 
This method has the advantage of being simple, straightforward and general. Besides, 
this transformation method allows us to utilise most of the results appearing in the 
previous paper. Therefore, much less effort is needed in the derivation of the evolution 
operator for our present problem. 

The arrangement of this paper is as follows. In section 2, we shall develop the 
above-mentioned transformation method for a Hamiltonian system underlying a 
SU(2)O h(4) group structure. The evolution operator for such a system will be evaluated 
in exact form. 

In  section 3, we shall apply the method of section 2 to the problem of a mass-varying 
harmonic oscillator under an external force. This problem has been considered by 
Tartaglia 1151 in the discussion of the motion of a particle in a viscous medium. 
Dodonov and Man’ko [16] have also discussed the evolution of a coherent state in 
such a quantum system. In addition, Khandekan and Lawande [17] have employed 
Feynman’s propagator to solve this problem. We shall in this section discuss the effect 
of a sinusoidal external force on the oscillator. The evolution operator for such a 
system is found explicitly. The wavefunction is subsequently derived and is used to 
discuss the evolution property of an initial coherent state. Furthermore, the expectation 
values for the energy, position and momentum are evaluated. These results clearly 
elucidate the effect of an external force on a mass-varying oscillator. 

Section 4 is devoted to our conclusion. 

2. Evolution operator 

Before we derive the expression for the evolution operator, let us recall the group 
theoretic method employed in the previous paper. If a Hamiltonian can be expressed 
as a linear combination of group generators of certain closed Lie algebra S, 

m 

A(?)= C a l ( t ) A l  (2.1) 
! = I  

A 

where a,( t )  are functions of time and {HI, i = 1 , .  . . , m} form a closed Lie algebra 2 
of dimension m, then the corresponding evolution operator can be expressed locally 
in the following form: 

in which c , ( t )  are functions of time. In this way, the evaluation of the evolution 
operator e(?) is reduced to the determination of the functions c , ( r ) .  

In this paper we consider the Hamiltonian which contains a linear combination of 
SU(2)0h(4)  group generators: 

A( t ) = u ( t ) j+ + a2( t ) j o  + a3( r ) j -  + u4( t 2, + a5( r R- + a,( t )  (2.3) 
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where a,( t )  are functions of time. In the above expression, the operators J + ,  J -  and 
j ,  form an SU(2) Lie algebra 

(2.4) 

[ j0 ,  .?*I = *j* (2.5) 

while the other three operators k+,  R- and i form the Heisenberg-Weyl algebra, h(4) 
Lie algebra 

[ K , ,  K - ] =  - 1 .  (2.6) 

A A  

[ J + ,  J-3 = 2j0  

A A  

The commutation relations among the two sets of operators are given by 

[i*, R*]=O (2.7) 

[J , ,  KFI = -K* (2.8) 

[&, R,] = * t i * .  (2.9) 

A straightforward approach to the above quantum system will be the direct application 
of the result presented by (2.2) to the Schrodinger equation 

A A  A 

(2.10) a 
a t  

ih- 10(t)) = A(t)lQ(t)) 

so that a set of six differential equations can be deduced. This set of equations can 
subsequently be solved to give the coefficients c,( t )  of the evolution operator (cf (2.2)). 
However the setting up of the six equations is rather tedious. We therefore resort to 
another approach based on a transformation method. 

To start with, we invoke a transformation on the Schrodinger wavefunction IO( t ) )  
represented by 

I@(?))= a(t)lw)> (2.11) 

where I"( t ) )  represents a transformed wavefunction, while 6,( t )  is a unitary operator 
given by 

Cl(?) = e c , ( r J J +  e c 2 ( i l j o e c 3 ( r ) J -  (2.12) 

In order that the unitary operator satisfies the initial condition 

6 , ( 0 )  = i (2.13) 

the coefficients c,( t )  are required to obey the following conditions: 

C,(O) = 0 i = 1,2 ,3 .  (2.14) 

The explicit form of the coefficients c , ( t )  is not yet specified. Resetting the transforma- 
tion (2.11) into (2.101, we arrive at the following equation in the l?(r)) representation: 

i r T ( t )  A( t ) - ih -  f i l ( t ) l q ( t ) ) = ~ .  (2.15) 

Now the coefficients c , ( t )  appearing in f i l ( t )  are specified by requiring that only the 
expression 

( a t  a )  

r i :( t)Ei(t)ir ,( t)-ihir;( t)  (2.16) 
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be independent of the operators .?+, j -  and .?,. In other words, we require the expression 
(2.16) to be comprising only the operators k+,  2- and a constant term. By inserting 
(2.3) and (2.12) into the expression (2.16), we obtain 

~ ~ ( r ) ~ ( r ) ~ , ( t ) - i h ~ ~ ( r )  - f i l ( t )  

C M Cheng and P C W Fung 

(2.17) 
t a r  ) 

= 5 ,  ( tQ+ + t + i3( t);- + 14( t 1 k+ + ~ ~ ( 5 )  R- + 56 

where the & ( t )  are given by 
5 1 -  = e - c z [ - '  1 he, + a ,  + U>CI - a3c:1 

5 = _  - i h [ + 2 C, c, e -'>I + 2 a I c3 e + az[  1 + 2 c, c3 e -'>I - 2 a, c,  [ 1 + c, c3 e --'2], (2.19) 

l3 = -i h [ c3 - c3c2 - c, c: e - ' ~ ]  - a ,  c: e -', - azc3[ 1 + c1 c3 e-'>] 
+ a 3 [ e ' ~ + 2 c , c , + c ~ c :  e-'?] (2.20) 

14= [a4+ajc,] (2.21) 
l 5 =  a 4 3  e - ~ l / 2 ~ ~ ~ + a j [ e 1 1 / 2 ~ ' 2 + C  1 3  e - l l / z ) c 2  1 (2.22) 

l 6 =  a6. (2.23) 
In the above expression, a dot appearing above each symbol denotes a time deriv?tiv:. 
Recalling our requirement, the expression (2.16) is taken to be independent of J , ,  J -  
and jO. In view of (2.17), the above requirement can be recast in the following equations: 

(2.24) 

(2.18) 

5 1  = 5 2  = 5 3  = 0. 
These equations can be rewritten, after some manipulation, into the following: 

d l  = a ;  + a;c,  - a;c: (2.25) 

e 2  = a;  - 2a;c, (2.26) 

c3 = a; er> (2.27) 
in which we have denoted 

1 -  ai aj = - 
l h  

j = 1 ,  2 ,3 .  (2.28) 

The above three familiar equations are identical to the equations obtained in the 
previous paper. The first equation (2.25) is the well known Ricatti equation. This can 
be solved readily as we have done in the previous paper once the coefficients a, are 
given. The other two equations (2.27) and (2.28) can hence be solved readily: 

c 2 =  J o ' d u [ a ~ - 2 a ~ c , ]  (2.29) 

P I  

c3 = J d u  a; ec2. 
0 

(2.30) 

U p  to this point, the unitary operator represented in (2.12) is completely determined. 
Now we return to look at  the evolution equation (2.15). In view of (2.17) and (2.24). 
this evolution equation can be rewritten in the following form: 

in which 

&( t )  = 14kt + 5,R- + 16. (2.32) 
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We readily realise that the Hamiltonian &( t )  consists only of h(4) Lie group generators. 
This Heisenberg-Weyl group, being simpler than the SU(2) group, allows us to solve 
the evolution equation (2.31) easily. 

By means of the result given in (2.2), the evolution operator for the above equation 
(2.31) can be written in the following form: 

(2.33) f i 2 ( t )  = ec6 eC4'+ ecsk-, 

This evolution operator satisfies the expression 

IWtN = ir,( t ) I W O ) )  (2.34) 

and obeys the initial condition 

&(O)  = i. (2.35) 
This initial condition implies the following initial conditions for c,( t ) :  

c,(O) = 0 j = 4, 5,6. (2.36) 
Inserting expression (2.33) for the evolution operator back into the evolution equation 
(2.31), it is not difficult to obtain the following sets of equations for c,( t )  ( j  = 4,5,6):  

d4=  (1, (2.37) 

e 5  = 5; (2.38) 

C6=5;c4+(; (2.39) 
where 

p 4  j = 4, 5,6. (2.40) ' i h  

The above set of equations can be solved easily to give 

c4 = i,' du i& 

c5 = lo' du 5; 

c6 = Jo' d ~ [ 5 ; ~ 4 +  5LI* 

(2.41) 

(2.42) 

(2.43) 

Up to this point, the Schrodinger wavefunction has been completely determined. In 
view of (2.11) and (2.34), the wavefunction is given by 

(2.44) 

(2.45) 
where the cj(t) are solutions to the set of ordinary differential equations in (2.25)-(2.27) 
and (2.37)-(2.39). Therefore the evolution equation (2.10) is basically solved. 

3. Mass-varying harmonic oscillator under an external force 

In the last section, we presented a way to evaluate the evolution operator for a 
SU(2)0h(4)  Hamiltonian. We are now in a position to apply this method to the 
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problem of a mass-varying harmonic oscillator under an external force. To begin, we 
write down the Hamiltonian as follows [ 15-17]: 

where Qex, is an external potential arising from an external force 

The equations of motion for the operators 3 and 4 are found to be 
Qcxt = - F (  t ) @ .  (3.2) 

1 P 
q = - [q ,  HI = - 

i h  M ( t )  
(3.3) 

(3.4) 
1 

i h  
p = - [ p ,  HI = - M (  t ) d q  + F (  t ) .  

These two equations will give rise to the following equation: 

which is identical to the classical equation of motion for a harmonic oscillator with 
damping coefficient (d ld t )  In[ M( t ) ]  and under an external force F (  t ) .  

To apply the result of the last section, we rewrite the Hamiltonian (3.1) in the form 

f i ( t )  = a , ( t ) ~ + + a , ( t ) ~ o + a , ( t ) ~ - + a , ( t ) R * + a , ( t ) R - + a , ( t )  (3.6) 
in which we have denoted 

a , ( [ )  = hM(t)w’ 
a*( 2 )  = 0 

a,( t )  = - a F (  t )  

as( t )  = 0 
ab( t )  = 0 

and the operators have the following identification: 

(3.7) 
(3.8) 

(3.9) 

(3.10) 
(3.1 1) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Now according to (2.45), we can write the evolution operator for the above 

fi(t,  0) = ecb er!’+ ec2Jo eC4‘+ e‘s‘- (3.18) 

Hamiltonian (3.1) as follows: - -  
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in which c, = cj( t ) , j  = 1,. . . , 6 ,  satisfy the ordinary differential equations (2.25)-(2.27) 
and (2.37)-(2.39). Inserting equations (3.7)-(3.12) into this set of equations, we readily 
obtain 

2i C2 = - 
M ( t )  

1 
c 
' 3 -  M(t)  e'' 

(3.19) 

(3.20) 

(3.21) 

i 
C - - F (  t)c3c4 e-"'2"2 " f i  

(3.23) 

(3.24) 

with initial condition 

C j ( 0 )  = 0 j = 1, . . . ,6 .  (3.25) 

Once M ( t )  is specified, the set of differential equations (3.19-(3.24) can be readily 
solved. 

As we have done in the previous paper, we assume an exponential variation for 
the mass of the oscillator 

M ( t ) = m e Y ' .  (3.26) 
The damping parameter y is here taken to be at the 'critically damped' value [l] :  

y = 2w. (3.27) 
On the other hand, the external force is taken to be sinusoidal with frequency w1 

F ( t )  = f c o s ( w , t + e )  (3.28) 
where f denotes the amplitude of the force and O signifies a phase difference between 
the external force and the oscillator. Having specified the mass and the external force, 
we can readily solve the above set of differential equations. The result is given below: 

t eZw' 
c1 = -imw2 - 

1 + w t  

c2 = 2 w t  - 2 in[ 1 + w t ]  

i t  
m 1+wt  

c 
3 -  

1 
c4 = i 6 f -  [e-"'h(t)-h(O)] 

1+;: 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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in which we have denoted 

(3.35) - f  f == 
Jhmw’ 

(3.36) 

(3.38) 

and e ( t )  is a real function of time. 
In the above expression for c6(t) ,  we have not given the explicit expression for 

e ( t ) .  This is because c6(t)  is only a phase factor which will not enter into our later 
calculation. 

We have here found the evolution operator of the oscillator. Hence we can proceed 
to evaluate the expectation value for the self-energy of the oscillator: 

(3 .39)  

In the above, do( t )  denotes the self-energy part of the time-dependent Hamiltonian 
(3 .1)  

Also, we begin with an initial coherent state I@(O))= 1.) with 

cy = Jn, e‘‘. (3.41) 
After some algebra, we arrive at 

E ( t ) = E o ( t ) + E , ( r )  (3.42) 

in which Eo( r )  is the energy expectation value for a mass-varying harmonic oscillator 
with no external force, which is identical to the result in the previous paper: 

E o ( t ) =  h w { ( n o + ~ ) ( l + 2 w 2 t 2 ) + ~ n o w t  cos 2q+2now2t2sin2q} (3.43) 

and E,([) corresponds to the part of energy due to the presence of the external force 
F ( t ) ,  

(3.44) E , ( t )  = h o { f i J ( a ,  cos cp - gz sin p)+f28 , )  

in which 

1 
[a ,%+ a,c,c,l (3.45) 8 - -- e - ( 1 / 2 1 c 2  

mw g - i c - ( l 1 2 k 2  

I -  JT;f 

2 -  Ji;f [ a  c3 c5 + a3 CA c1 c3 + e c 2 )  1 (3.46) 

(3.47) 
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In the same way, we can evaluate the expectation values for the position 4 and 

q = f j 0 + 4 f  (3.48) 

the momentum jj of the oscillator: 

B = B o + &  (3.49) 

where 

% = - f i e ,  

j jo = 

pf = -iJT;c,. 

e"'((1 - u t )  sin cp - w t  cos cp} 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

It could be easily identified that ijO and Bo correspond to the expectation values for a 
mass-varying harmonic oscillator with no external force; while qr and Br arise from 
the presence of the external force. 

In  order to discuss the squeezing property of the oscillator, we need to calculate 
the variance of the position and the momentum of the oscillator. They are listed below: 

(3.54) 

hmw 
2 

= = - e2"'{1 - 2wt  + 2 w 2 t 2 } .  (3.55) 

The result here shows that the variances of the two quantities are identical to their 
counterpart for the mass-varying harmonic oscillator with no external force. In other 
words, the two variances are not changed upon the introduction of the external force. 
From the result of the previous paper, we know that there is squeezing in the fluctuation 
in the position of the oscillator. This indicates that the initial wavefunction in (3.41) 
will evolve as a squeezed state. 

From equations (3.54) and (3.55), the uncertainty relation is given by 

h 
2 

A p A q = -  (1 +4w4t4)"* (3.56) 

which simply means that the product uncertainty will not reach the minimum value 
of h/2 as time proceeds. 

Now we introduce a set of operators as follows: 

a = ir( t ,  0); ir+( t, 0) 

a- = ii( t ,  O ) ; t + i r + (  t ,  0) 

[a, A+] = 1. (3.59) 

(3.57) 

(3.58) 

where 2, A +  are the usual annihilation and creation operators for a harmonic oscillator. 
The new set of operators satisfy the same commutation relation as 2 and A + :  

Since we begin with a coherent state 

a n  
IQ(0)) = la) = c - 2+"/0) (3.60) 

n - 0  m 
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it can be easily shown that the wavefunction for the mass-varying harmonic oscillator 
I @ ( t ) )  is a coherent state with respect to the new set of operators: 

Al@(t)) = al@(r)). (3.61) 

With the help of (3.18) and 

(3.62) 

we obtain the transformation from the ordinary set of operators &, A' to the new set, 
A, 2+: 

in which 

3 1 
mw 

-I - (I /21c2 , - e [ 1 + c,c3+ ec2+- c1 + m u 3  

I 1 
mw 

1 - cIc3 -ec>+- c ,  - mwc3 r 1 2 = f e - " / 2 " 2  

and they are found to satisfy 

1T112-lT212= 1. 

(3.63) 

(3.64) 

(3.65) 

(3.66) 
Since the transformation (3.63) here is not a Bogoliubov-type transformation, we can 
conclude that the wavefunction I@,( t ) )  does not evolve as a squeezed coherent state. 
( In  the previous paper, the wavefunction for a mass-varying harmonic oscillator with 
no external force is a squeezed coherent state.) Instead, the wavefunction l @ ( r ) )  for 
our present problem is simply a squeezed state. 

4. Remarks 

In this paper, we have devised a method to find the evolution operator for a Hamiltonian 
underlying a SU(2)O h(4) group structure. We have not directly employed the Magnus 
expansion method studied in the previous paper. Instead, we invoke a transformation 
to the original wavefunction so that the transformed Hamiltonian will take a simpler 
group structure. The group theoretic method presented in the previous paper can then 
be employed to obtain the whole evolution operator. 

We have studied the problem of a mass-varying harmonic oscillator under an 
external force. I t  is found that in general the expectation values for the energy, the 
position and the momentum of the oscillator with an external force are different from 
those with no external force. However the fluctuations Ap', Aq2  and ApAq remain 
the same whatever the external force. 

In conclusion, we would like to remark that the group theoretic method is very 
useful in obtaining an evolution operator for a Hamiltonian underlying a closed Lie 
group structure. This group theoretic method allows us to obtain an exact form for 
an evolution operator. In the case of a Hamiltonian possessing a more complex group 
structure, the transformation method we invoke in section 2 will become useful in 
simplifying the group structure. Therefore the combination of the group theoretic 
method and the transformation method allows us to treat a broader class of Hamiltonian 
systems underlying a closed Lie group structure. 
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